Duct Modeling Using the Generalized RBF Neural Network for Active Cancellation of Variable Frequency Narrow Band Noise

نویسندگان

  • Hadi Sadoghi Yazdi
  • Javad Haddadnia
  • Mojtaba Lotfizad
چکیده

We have shown that duct modeling using the generalized RBF neural network (DM RBF), which has the capability of modeling the nonlinear behavior, can suppress a variable-frequency narrow band noise of a duct more efficiently than an FX-LMS algorithm. In our method (DM RBF), at first the duct is identified using a generalized RBF network, after that N stage of time delay of the input signal to the N generalized RBF network is applied, then a linear combiner at their outputs makes an online identification of the nonlinear system. The weights of linear combiner are updated by the normalized LMS algorithm. We have showed that the proposed method is more than three times faster in comparison with the FX-LMS algorithm with 30% lower error. Also the DM RBF method will converge in changing the input frequency, while it makes the FX-LMS cause divergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Noise Cancellation using Online Wavelet Based Control System: Numerical and Experimental Study

Reaction wheels (RWs) used for attitude control of space vehicle systems usually encounter with undesired wide band noises. These noises which significantly affect the performance of regulator controller must tune the review or review rate of RWs. According to wide frequency band of noises in RWs the common approaches of noise cancellation cannot conveniently reduce the effects of the noise. Th...

متن کامل

Hyper Radial Basis Function Neural Network for Nonlinear Interference Cancellation

In this paper the neural network based lter for nonlinear interference cancellation is developed. The Hyper Radial Basis Function (HRBF) network with associated Manhattan learning algorithm is proposed for non-linear noise cancellation under assumption that reference noise is available. The HRBF network is a generalization of radial basis function (RBF) and generalized radial basis function (GR...

متن کامل

Error Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network

State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...

متن کامل

Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks

Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007